Nous serions heureux de vous conseiller !
+33 1 84 19 32 26     info@flane.fr

Formations en ligne en classe virtuelle, e-learning
et autres méthodes pour votre télétravail

En savoir plus

Data Engineering on Google Cloud Platform (DEGCP)

 

Résumé du cours

This four-day instructor-led class provides participants a hands-on introduction to designing and building data processing systems on Google Cloud Platform. Through a combination of presentations, demos, and hand-on labs, participants will learn how to design data processing systems, build end-to-end data pipelines, analyze data and carry out machine learning. The course covers structured, unstructured, and streaming data.

Moyens Pédagogiques :
  • Réalisation de la formation par un formateur agréé par l’éditeur
  • Formation réalisable en présentiel ou en distanciel
  • Mise à disposition de labs distants/plateforme de lab pour chacun des participants (si applicable à la formation)
  • Distribution de supports de cours officiels en langue anglaise pour chacun des participants
    • Il est nécessaire d'avoir une connaissance de l'anglais technique écrit pour la compréhension des supports de cours
  • Accessibilité aux Personnes en Situation de Handicap – nous contacter
Moyens d'évaluation :
  • Évaluations formatives pendant la formation, à travers les travaux pratiques réalisés sur les labs à l’issue de chaque module
  • Évaluation sous forme de questionnaire à l’issue de la formation

A qui s'adresse cette formation

This class is intended for experienced developers who are responsible for managing big data transformations including:

  • Extracting, Loading, Transforming, cleaning, and validating data
  • Designing pipelines and architectures for data processing
  • Creating and maintaining machine learning and statistical models
  • Querying datasets, visualizing query results and creating reports

Certifications

Cette formation prépare à la/aux certifications:

Pré-requis

To get the most of out of this course, participants should have:

  • Completed Google Cloud Fundamentals: Big Data and Machine Learning (GCF-BDM) course OR have equivalent experience
  • Basic proficiency with common query language such as SQL
  • Experience with data modeling, extract, transform, load activities Developing applications using a common programming language such Python
  • Familiarity with Machine Learning and/or statistics

Objectifs

This course teaches participants the following skills:

  • Design and build data processing systems on Google Cloud Platform
  • Process batch and streaming data by implementing autoscaling data pipelines on Cloud Dataflow
  • Derive business insights from extremely large datasets using Google BigQuery
  • Train, evaluate and predict using machine learning models using Tensorflow and Cloud ML
  • Leverage unstructured data using Spark and ML APIs on Cloud Dataproc
  • Enable instant insights from streaming data

Contenu

Module 1: Google Cloud Dataproc Overview
  • Creating and managing clusters.
  • Leveraging custom machine types and preemptible worker nodes.
  • Scaling and deleting Clusters.
  • Lab: Creating Hadoop Clusters with Google Cloud Dataproc.
Module 2: Running Dataproc Jobs
  • Running Pig and Hive jobs.
  • Separation of storage and compute.
  • Lab: Running Hadoop and Spark Jobs with Dataproc.
  • Lab: Submit and monitor jobs.
Module 3: Integrating Dataproc with Google Cloud Platform
  • Customize cluster with initialization actions.
  • BigQuery Support.
  • Lab: Leveraging Google Cloud Platform Services.
Module 4: Making Sense of Unstructured Data with Google’s Machine Learning APIs
  • Google’s Machine Learning APIs.
  • Common ML Use Cases.
  • Invoking ML APIs.
  • Lab: Adding Machine Learning Capabilities to Big Data Analysis.
Module 5: Serverless data analysis with BigQuery
  • What is BigQuery.
  • Queries and Functions.
  • Lab: Writing queries in BigQuery.
  • Loading data into BigQuery.
  • Exporting data from BigQuery.
  • Lab: Loading and exporting data.
  • Nested and repeated fields.
  • Querying multiple tables.
  • Lab: Complex queries.
  • Performance and pricing.
Module 6: Serverless, autoscaling data pipelines with Dataflow
  • The Beam programming model.
  • Data pipelines in Beam Python.
  • Data pipelines in Beam Java.
  • Lab: Writing a Dataflow pipeline.
  • Scalable Big Data processing using Beam.
  • Lab: MapReduce in Dataflow.
  • Incorporating additional data.
  • Lab: Side inputs.
  • Handling stream data.
  • GCP Reference architecture.
Module 7: Getting started with Machine Learning
  • What is machine learning (ML).
  • Effective ML: concepts, types.
  • ML datasets: generalization.
  • Lab: Explore and create ML datasets.
Module 8: Building ML models with Tensorflow
  • Getting started with TensorFlow.
  • Lab: Using tf.learn.
  • TensorFlow graphs and loops + lab.
  • Lab: Using low-level TensorFlow + early stopping.
  • Monitoring ML training.
  • Lab: Charts and graphs of TensorFlow training.
Module 9: Scaling ML models with CloudML
  • Why Cloud ML?
  • Packaging up a TensorFlow model.
  • End-to-end training.
  • Lab: Run a ML model locally and on cloud.
Module 10: Feature Engineering
  • Creating good features.
  • Transforming inputs.
  • Synthetic features.
  • Preprocessing with Cloud ML.
  • Lab: Feature engineering.
Module 11: Architecture of streaming analytics pipelines
  • Stream data processing: Challenges.
  • Handling variable data volumes.
  • Dealing with unordered/late data.
  • Lab: Designing streaming pipeline.
Module 12: Ingesting Variable Volumes
  • What is Cloud Pub/Sub?
  • How it works: Topics and Subscriptions.
  • Lab: Simulator.
Module 13: Implementing streaming pipelines
  • Challenges in stream processing.
  • Handle late data: watermarks, triggers, accumulation.
  • Lab: Stream data processing pipeline for live traffic data.
Module 14: Streaming analytics and dashboards
  • Streaming analytics: from data to decisions.
  • Querying streaming data with BigQuery.
  • What is Google Data Studio?
  • Lab: build a real-time dashboard to visualize processed data.
Module 15: High throughput and low-latency with Bigtable
  • What is Cloud Spanner?
  • Designing Bigtable schema.
  • Ingesting into Bigtable.
  • Lab: streaming into Bigtable.
Formation en salle équipée

Durée 4 jours

Prix (Hors Taxe)
  • France: 3 000,– €

Agenda

Délai d’accès – inscription possible jusqu’à la date de formation
Instructor-led Online Training:   Cours en ligne avec instructeur
Formation en mode FLEX, à la fois à distance et en présentiel. Tous nos cours FLEX sont aussi des ILO (Instructor-Led Online).
Anglais
Fuseau horaire: Heure d'été d'Europe centrale (HAEC)   ±1 heure
Formation en ligne Formation en mode FLEX.
Fuseau horaire: British Summer Time (BST)
Formation en ligne Formation en mode FLEX.
Fuseau horaire: Greenwich Mean Time (GMT)
2 heures de différence
Formation en ligne Formation en mode FLEX.
Fuseau horaire: Gulf Standard Time (GST)
3 heures de différence
Formation en ligne 3 jours Formation en mode FLEX.
Fuseau horaire: India Standard Time (IST)
4 heures de différence
Formation en ligne 3 jours Fuseau horaire: India Standard Time (IST)
6 heures de différence
Formation en ligne Fuseau horaire: Eastern Daylight Time (EDT)
Formation en ligne Fuseau horaire: UTC+8
Formation en ligne Fuseau horaire: Eastern Daylight Time (EDT)
Formation en ligne Fuseau horaire: Eastern Daylight Time (EDT)
Formation en ligne Fuseau horaire: Eastern Standard Time (EST)
7 heures de différence
Formation en ligne Fuseau horaire: UTC+8
Délai d’accès – inscription possible jusqu’à la date de formation
Formation en mode FLEX, à la fois à distance et en présentiel. Tous nos cours FLEX sont aussi des ILO (Instructor-Led Online).
Europe
Allemagne
Munich Ce cours FLEX est en Allemand
Fuseau horaire: Heure d'été d'Europe centrale (HAEC)
Francfort Ce cours FLEX est en Allemand
Fuseau horaire: Heure d'été d'Europe centrale (HAEC)
Hambourg Ce cours FLEX est en Allemand
Fuseau horaire: Heure normale d'Europe centrale (HNEC)
Italie
Sesto San Giovanni (MI) Ce cours FLEX est en Italien
Fuseau horaire: Heure d'été d'Europe centrale (HAEC)
Rome Ce cours FLEX est en Italien
Fuseau horaire: Heure normale d'Europe centrale (HNEC)
Royaume-Uni
London, City Ce cours FLEX est en Anglais
Fuseau horaire: British Summer Time (BST)
London, City Ce cours FLEX est en Anglais
Fuseau horaire: Greenwich Mean Time (GMT)

Fast Lane Flex™ Classroom Si vous ne trouvez pas de date adéquate, n'hésitez pas à vérifier l'agenda de toutes nos formations FLEX internationales